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Statistically enhanced promiscuity of structurally correlated patterns
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We predict that patterns with correlated surface density of atoms have statistically higher promiscuity
(ability to bind stronger to an arbitrary pattern) as compared with noncorrelated patterns with the same average
surface density. We suggest that this constitutes a generic design principle for highly connected proteins (hubs)
in protein interaction networks. We develop an analytical theory for this effect. We show that our key predic-
tions are generic and independent, qualitatively, on the specific form of the interatomic interaction potential,

provided it has a finite range.
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Any living cell is densely crowded with proteins. The
average density of proteins in a cell is strikingly high. For
example, in a typical bacterial cell, E. Coli, with a volume of
1 um? there are approximately 4 X 10° proteins at any mo-
ment of time [1]. With an average protein size being 2 nm,
this translates to a volume fraction of about 0.02, which is a
high fraction! A key, open question of molecular biology is
how proteins maintain the necessary level of specificity at
such high protein concentrations. What are the generic prin-
ciples that evolution utilizes in designing protein surfaces
that provide the specificity? Conversely, are there generic
design signatures that make proteins more promiscuous (i.e.,
able to interact with multiple partners)? It has been recog-
nized rather recently that understanding protein promiscuity
is a key step towards understanding the evolvability and
plasticity of protein-protein interaction (PPI) networks [2].
Another central issue concerns the competition between pro-
miscuity and robustness in PPI networks [3,4]. Motivated by
these questions, here we predict one generic, structural de-
sign principle responsible for the enhanced promiscuity of
proteinlike and other types of patterned surfaces. In particu-
lar, we predict that patterns with the enhanced atomic surface
density correlations are more promiscuous than noncorre-
lated patterns (the entirely random pattern is an example of a
noncorrelated pattern).

We suggest that such promiscuous proteins play a role of
“hubs” in PPI networks (i.e., proteins with many interacting
partners; see, e.g., Refs. [5,6] for a review on hub proteins in
the human and yeast PPI). We will provide a more precise
definition of “promiscuity” below.

We begin by introducing a simple, coarse-grained model
of random [7,8] and “designed” proteinlike surfaces. A ran-
dom surface is obtained by distributing N particles at random
on a planar, circular surface with the surface area A, Fig. 1.
The average density of particles is thus ¢y=N/A. Particles
are not allowed to overlap, as they have the hard-core diam-
eter d,. After the surface pattern is generated, the particles
are fixed and not allowed to move. A designed surface is
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obtained using the following Monte Carlo (MC) design pro-
cedure. First, we generate a random surface pattern, as de-
scribed above. Second, we allow particles to anneal at a
given design temperature 7, To this end, we impose that
particles within the surface interact through the pairwise de-
sign potential, Uy(p), where p is the distance between two
particles within the surface. For a given surface configura-
tion, the total interaction energy of the pattern, E,, is

1 = = 4 4 = 4
Ed=5J edP)U|p~ 5" ealp")d*pdp’, (1)
where @ (p)=¢y+d,(p) is the local pattern density at the

point p=(x,y), with ¢,(p) being the deviation (fluctuation)
of the local density from its average value ¢,. The only
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FIG. 1. (A) Schematic representation of a model interacting pair
of proteins, where one protein interface is random and another one
is designed. Both interfaces have identical average surface density
of particles (amino acids). Qualitatively, a designed interface con-
tains dense clusters (patches) of amino acids. (B) Snapshots of ran-
dom and designed patterns as obtained from simulations. The de-
signed pattern is obtained at the design temperature, 7,=1. There
are 350 particles in each snapshot. The diameter of the surface is
D=140 A, the particle size is dy=5 A. The average surface fraction
of particles in each surface pattern is thus <$O=Nd(2)/ D?=0.45. The
MC design procedure performs 10* MC sweeps (for each designed
pattern) at a given design temperature.
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FIG. 2. (Color online) Computed density correlation function
g(p) for random and designed surface patterns. g(p) is normalized
in such a way that [Jg(p)dp=1. The MC design procedure per-
forms 10* MC sweeps at a given design temperature for each de-
signed pattern. Each curve is obtained as the ensemble average over
10* patterns. The error bars are not shown, as they are comparable
with the linewidth.

assumption about the potential is that it is a pairwise addi-
tive, finite-range potential characterized by the interaction
length scale &.

We note that in the analytical analysis described below,
we assume that the potential U,(p) in Eq. (1) is a continuous
potential, and correspondingly, the density function @ (p) is
also continuous. To speed up the numerical simulations,
however, we use hard-core particles with the additional,
square-well potential (see below).

We next perform the standard MC annealing procedure
[9] with the Boltzmann weight, ~exp(-E,/T,), where T} is
measured in units of kT, where kp is the Boltzmann constant
and T is the absolute temperature. The MC procedure is
stopped after a certain number of MC moves, and the result-
ing annealed configuration is accepted as the final, designed
configuration. An example of one such designed configura-
tion is shown in Fig. 1. In this example the adopted design
potential U,(p) is an attractive, square-well potential:
U p)=—2kgT, if 5 A<p=<8 A, and U,(p)=0, if p>8 A,
and particles have the hard-core diameter of 5 A.

Quantitatively, the density correlation function, g(p)
~{4(0)¢,(p)), characterizes how strongly the surface is de-
signed, where the averaging here is performed with respect
to different realizations of patterns at a given design tem-
perature. Apparently, g(p) is proportional to the probability
density to find a particle separated by the distance p from a
randomly selected particle. Figure 2 shows the computed
g(p) for random and designed surfaces. The lower the design
temperature T, the higher is the degree of the particle order-
ing (correlation) and clusterization on the surface. The aver-
aging is performed over the ensemble of surface patterns
generated at each given design temperature, Fig. 2.

Our first task is to analyze the probability distribution for
the interaction energies P(E), and the corresponding extreme
value distribution (EVD), P.,(E), for pairs of interacting
surface patterns. Every such pair consists of a random pattern
and a designed pattern, respectively, Fig. 1. The EVD is the
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probability distribution of the minimum intersurface energies
with respect to mutual rotation of surfaces. This probability
distribution is practically the most important one, as proteins
bind approximately according to this distribution.

We begin by computing the properties of P(E). The inter-
action energy E between the random surface and the de-
signed surface (in a random mutual orientation between the
two surfaces) is

E- f e U7 7 e(5 255, @

where ¢(p)=d¢y+ d(p) is the density of particles in the ran-
dom surface pattern, and ¢(p) is the deviation of the density
from its average value ¢; and ¢ (p’) is the corresponding
density in the designed pattern [it is defined after Eq. (1)].
Here we assume for the sake of simplicity that random and
designed patterns have the same average density ¢,. U(|r
—F’|) is the intersurface interaction potential (it does not
have to coincide with the design potential U,), where 7
=(p,—h/2) and ' =(p’,+h/2), with & being the intersurface
separation. We aim to compute the probability distribution
P(E) which is the Gaussian probability distribution entirely
specified by its mean (E) and by the dispersion o?=((E
—(E))?). The probability distribution for the density fluctua-
tions in the designed patterns has the form

Plo.p)]=C, exp{—f ‘15‘21(@6125/2%]3?413(— EJT,),
(3)

where E; is given by Eq. (1), and C,; is the normalization
constant. The first exponential in Eq. (3) takes into account
the configurational entropy of patterns, and the second expo-
nential describes the contribution to the intrapattern energy
due to the local density fluctuations. The corresponding
probability distribution for random patterns has only the en-
tropic contribution [7], P[¢(p)]=C, exp[—[ d*(p)d*p/2¢h].
We note that this entropic contribution can be derived by
expanding the ideal gas entropy to the second order in the
density fluctuations, ¢(p).

Using these probability distributions we can now perform
the ensemble averaging of the interpattern interaction energy,
Eq. (2), in the Fourier space [7]. The resulting dispersion o,
of the energy fluctuations has the form

1 d’q
(1o + Uy gyT,) ™

0?=4dA f U (4)

where U, (q)=JU,(p)e?d?p, and U(g) is defined analo-
gously. We note that in the limit of the vanishing magnitude
of the design potential, U,(§)/T,=0, Eq. (4) takes the correct
form of the dispersion for random heterodimers [7], 07 cro-
Our key, qualitative result, following from the analysis of Eq.
(4), is that the lower the design temperature T; in the en-
semble of designed patterns, the larger is the dispersion o.
This conclusion holds true for any attractive design potential
U,(p). We stress that the latter result is robust with respect to

the sign of the intersurface potential U(r). Enhanced density
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correlations within the designed surface patterns are respon-
sible for the predicted effect. In particular, due to the pres-
ence of correlated, inhomogeneous clusters within designed
surface patterns, it is more probable to find both the lower
and the higher energy states upon the interaction with ran-
dom patterns as compared with the case of the interaction
between two entirely random patterns. We note that the sin-
gularity in the integrand of Eq. (4) indicates the onset of the
order-disorder phase transition at sufficiently high strength of
the attractive design potential. Our Gaussian fluctuation
theory, however, is breaking down in the vicinity of this
transition, and higher-order terms in density fluctuations
must be considered to account for the phase transition prop-
erly.

Adopting a simple form for both U(r)=U,exp(-r?/&)
and U,(p)=Uy, exp(—p?/ &), where r>=p*>+h?, we obtain the

following scaling relationship in the limit lA/d(c])/ T,<1:

Ug

P -a’ —=
T,

r,hetero

~ U A, (5)
For any attractive design potential, U,y <0, and therefore
o> a'f’hetero. This implies that the EVD, P,;,(E), for inter-
acting surface pairs in which one pattern is designed, Fig. 1,
is always shifted towards lower energies as compared with
the EVD for pairs consisting of both entirely random pat-
terns. Intuitively, this means that designed patterns are statis-
tically more promiscuous than random patterns.

We emphasize that not only the dispersion o, but also the
average energy (E), depends on T, The lower T, is, the
lower is (E) for any attractive U,,. This is due to the follow-
ing finite-size effect (this result does not follow from the
straightforward averaging of Eq. (2) in the thermodynamic
limit). As a result of the design procedure, any finite, de-
signed pattern has a higher local density than a random pat-
tern; this is visually seen in Fig. 1. As the average surface
density ¢, is fixed, designed patterns are shrunk within the
finite surface area as compared with random patterns, Fig. 1.
It is easy to derive the scaling relationship for the difference
between the average energies (E) in the limits of very low
(extremely correlated patterns) and very high (entirely ran-
dom patterns) design temperatures:

(E(T; < 1)) = (E(T;> 1)) ~ Uyp&A, (6)

where we again assumed the Gaussian form of the intersur-
face interaction potential U(r). It is interesting to note that
this result is sensitive to the sign (and not only to the ampli-
tude) of U(r). While for any attractive U(r), the lower T is,
the lower is (E); for a repulsive U(r) the trend would be the
opposite.

The numerical results illustrating the principles described
above are presented in Fig. 3. Both probability distributions,
P(E) and P,;,(E), are computed in Fig. 3 for different values
of T, In order to compute P,;,(E) numerically, we rotate
each pair of surfaces about their common axis, until the low-
est possible intersurface energy for this pair is found.

The key, qualitative conclusion following from the above
analysis is that designed proteinlike patterns always have a
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FIG. 3. (Color online) Computed probability distributions for
the interaction energies within the pairs of interacting random and
designed surface patterns, P(E), and the extreme value distributions
(EVD) P,,;,(E), respectively, at different values of the design tem-
perature 7,;. Each generated pair of patterns consists of one entirely
random pattern and one designed pattern (see the caption of Fig. 1
for the numerical surface parameters). The lower is the design tem-
perature, the lower is the corresponding average energies, and the
larger is the dispersion of the corresponding probability distribu-
tions. This is compared with the corresponding probability distribu-
tions for pairs of entirely random patterns. The separation / be-
tween the surfaces within each interacting pair is 7=5.01 A. The
intersurface interaction potential U(r) was chosen to be identical to
the design potential U,(p) specified in the main text. The energy is
plotted in the units of 7; and normalized per one particle.

larger number of interacting partners in a PPI network as
compared with random patterns. The magnitude of the
energy shift AE between the corresponding P,,(E) in
Fig. 3 provides a quantitative estimate for the strength
of the predicted effect. In particular, AE=(E;,(T,=1))
—(En(random))=—0.6 KT, per one interface residue. For a
typical protein interface with N;=50 interface residues, this
translates to a large ratio of the concentrations, n,_./n,_,
=exp(—AEN;/kT) =20, where n,_, and n,_, are the concen-
trations of the interacting (designed-random) and (random-
random) protein pairs, respectively. Even at considerably
higher design temperature (corresponding to a much weaker
design strength), T;=2, this ratio is still as large as 4.5! The
key message here is that the PPI network connectivity (i.e.,
the average number of interacting partners) for a designed
protein is about an order of magnitude larger than for a ran-
dom protein even for moderate design strength. In other
words, structural design via enhancing surface density corre-
lations is a generic design principle for hub proteins in PPI
networks. The latter result constitutes our key finding in this
paper.

Our final result is the prediction that hub-hub interactions
are always statistically stronger than interactions between
pairs consisting of a hub and a random protein [described by
Eq. (4)]. This finding may help to resolve an open and con-
troversial experimental question about the strength of hub-
hub interactions in PPI networks of different organisms [6].

In this case both patterns within each interacting pair are
designed at a given design temperature 7, Following the
steps described earlier, and averaging E with the probability
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distribution, Eq. (3), we obtain the following dispersion
O4netero fOT the case of designed heterodimers (i.e., two dis-
tinct, designed, interacting patterns):

1 d’q
(1o + Ualq TP 27

Ufl,hetero = 4Af |f](é))|2

The principal message here is the fact that o peero=> O,
where o is given by Eq. (4). This implies that interacting
pairs of two designed patterns are statistically more strongly
bound than pairs consisting of a random pattern and a de-
signed pattern.

We note, finally, that the universal principle of statistically
enhanced self-interaction of random patterns predicted ear-
lier [7] holds true for the case of designed patterns, as well.
In particular, the pairs of randomly superimposed, identical
(i.e., homodimeric) designed patterns have always twice as
large magnitude of the energy fluctuations with respect to
their mutual orientation, as compared with pairs of distinct
(heterodimeric) designed patterns o'fi’homo/of,’heter():l where

of,’homo is the corresponding dispersion for homodimers. The
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latter law implies that the EVD of the interaction energies for
designed homodimers is always shifted towards lower ener-
gies as compared with the EVD for designed heterodimers.
Therefore in the PPI network consisting of random and de-
signed proteins, the attractive hub-hub interactions (both
homo- and heterodimeric) are statistically stronger than in-
teractions between random proteins and hubs, and of course,
stronger than interactions between pairs of entirely random
proteins.

In summary, our key result is the prediction that protein-
like surface patterns with enhanced correlations of the den-
sity are, statistically, more promiscuous as compared with
entirely random patterns (with the same size and the same
average surface density). In particular, we suggest that such
highly promiscuous proteins play a role of hubs in PPI net-
works. The key, experimental verification of our prediction
requires the computation of the density correlation functions
g(p) at real protein interfaces. Such a key test, using crystal-
lographic PPI structural data, is currently under way.

We are grateful to B. Shakhnovich, K. Zeldovich, D. Taw-
fik, G. Schreiber, and P. M. Kim for helpful discussions.
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